
Large Scale Applications
using Ruby on Rails

by Parth Barot

Agenda

01
LTS
expectations

02
Application
design &
Architecture

03
Implementation
process

04
Code quality
analysis

05
Testing
methodologies

06
Infrastructure

Agenda

Long Term Support -
Expectations
● Simple and better architectural code and infrastructure design - easy to understand, change, maintain

and support, monolith initially.

● Detailed documentation.

● Testability across application, with automation.

● Scalability

Application Design

Admin Blog StoreFront Marketplace

Controllers

Admin Blog StoreFront Marketplace

Services

Admin Blog StoreFront Marketplace

Models

Admin Blog StoreFront Marketplace

Tests

Application Design

Initially, we have to keep it simple!

● Rails conventional structure with MVC / MVCS - Separate our code into components such that each
layer is easily testable with unit tests!

● Rspecs/tests, having 90-95% test coverage

● Documentation in the code, following style guide and use README whenever needed

● Scalability, later - with multiple nodes OR divided into microservices OR using serverless?

Advanced Ideas

● Define modules for each component layer to group your components

● Usage of Rails engine to implement each feature as a plugin (like, blog feature as a separate engine)

https://guides.rubyonrails.org/engines.html

Infrastructure Architecture - V1

Infrastructure Architecture - V2 (future)

● Microservices based decomposition of monolithic applications

○ Extract out services based on functional responsibilities (Like, Blog, Store front and Marketplace
can be extracted as separate apps)

○ User service discovery (Consul, etcd, Eureka OR kubernetes for more stuff).

○ Implement auto-scaling for each microservice as required.

○ Service could be another EC2 OR small serverless component (Like, small task of convert file
formats into PDF OR image can be achieved by AWS Lambda and load will be reduced from the
core app)

Define Process03
● Git, code review, merging, deployments
● Agile project mgmt. With sprints
● Documentation & deployment tools (Jira, CI/CD etc)

Design02
● App & DB design, system architecture, Security
● Coding standards, components, patterns
● Build base framework with folder structure

Analysis01
● Understanding, assumptions, Grey areas
● Application workflow, Identify Approach “HOW” part
● High level estimates

Live Release06
● Live support, Monitoring & analysis, performance

tuning & scaling
● User feedback, prepare roadmap for next release

Pre-Release05
● Release docs, Automated deployment
● Monitoring setup, User demos, guides
● UAT & signoff

Product Implementation04
● Sprint - Planning, Grooming, Run, Demo & Retro
● Self functioning team, motivated, initiatives, concise

communication, reduce tech. Debt
● Asynchronous working style

Implementation
Process

Branching

Branch Creation Criteria Naming Convention

PR Creation & Review

PR Labels

Assignees & Reviewers
Conflict Resolving

• Master – Production
• Develop – Staging

• Creates a branch from Master when
creating a new branch for a feature.

• Creates a branch from develop when
creating a new branch from the
developing branch.

feature/feature_name, feature/sub_feature_name.feature_name,
enhancement/enhancement_name, fix/fix_name,
hot-fix/hot_fix_name

• There will be labels that you've to assign to the PR.
• If the feature is working, the PR label will be - WIP.
• If PR is ready to merge then the label will be - Ready

To Merge
• If PR is reviewed and has unresolved comments or

conflicts then the label will be - Do Not Merge

• The person who has created the PR has
to select the user as an assignee.

• The person who is going to review the PR
will be added to the Reviewers.

GIT Process

01

Code
Quality
Analysis

● Collects and analyzes source code.

● Provide reports for the code quality of the project.

● Enables measuring quality continuously over time.

● Analyze where the code is messing up and determine whether it has

styling issues, code defeats, code duplication, complex code.

02
SimpleCov

● SimpleCov is a code coverage analysis tool for Ruby.

● Provides clean API to filter, group, merge , etc. and display those results,

giving us a complete code coverage suite.

● Cache and merge results when generating reports, which includes

coverage across test suites and provides a better picture of blank spots.

● Coverage of rspecs via integrating SimpleCov gem of Rails.

03
Rspecs

● RSpec is a Ruby programmers' Behaviour-Driven Development tool.

● The executable example tests whether a portion of code exhibits the

expected behaviour in a controlled context.

● Test for the API endpoints exposed for web frontend, ensures that they are

returning the correct responses.

Testing Methodologies

Functional
Integration, Sanity, Ad-Hoc, Regression,

Boundary Value

Responsiveness
Testing in different OS and version and

with different size of device

Cross Browser Compatibility
on various Browsers and using Cross
Browser Tool

Automation Testing
Functional test cases using Selenium with
Python/Javascript/JAVA

Database testing
Testing the integrity of the database with

the frontend by executing SQL queries

Api Testing
Using Postman

Infrastructure

● Cloud services - DigitalOcean, AWS, Google cloud, MS Azure

● Cloud management using CI/CD - Kubernetes, Docker, Jenkins/CircleCI/TravisCI

● Automated code reviews - SonarQube/CodeClimate/Codacy

● Monitoring tools - Sentry, Newrelic

● Git repository - Github, BitBucket

● Project management & ticketing tools - Jira+Confluence, Asana, Basecamp, github issue and proj. mgmt.

● Collaboration - Slack, Hipchat, Flock, MS Teams, Skype business, Discord, Ryver

● Meetings - Zoom, Google Meet, MS Teams, Skype, Whatsapp

● Documentation - Confluence, Github Wiki, Google Docs

Thank You

contact@tntra.io www.tntra.io

Contact Us

